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Abstract

Assistance systems are used in production facilities to help workers during assembly. An
assistance system consists of a central system and one or more CPS modules. CPS
modules collect data from environment through various sensors and provide information
to the central system. However, to fully extract the bene�ts of an assistance system, it
is important that CPS modules can exchange data between them. This work provides a
framework to design CPS modules and describe it semantically for interoperability across
modules. The framework is then used to show how to design a weighing module for an
assistance system, how to semantically describe it, and how to allow interoperability with
other modules.
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1. Introduction

An ever growing catalogue of products by companies, which may be relatively minor
customization for di�erent consumer segments, has trickled down to the number of
variants being produced by the production facility. On the one hand, increasing global
competition has led to low costs and shorter life-cycles and, on the other hand, changing
demographics in many parts of the world has resulted in increasing labour costs which
makes it di�cult for manufacturers to compete in the market.

Also, the uctuating demand makes it extremely di�cult for the automotive sector to
have a static set up as it is incapable of accommodating variations in production line-up.
Automation is one plausible solution to reduce the labour costs in production. However,
existence of a high number of variants makes it di�cult for engineers to automate the
process since setup of the facilities would require frequent change. This gave rise to the
demand of reactive and proactive system that can respond to dynamic changes in the
markets and has led to a number of changes in production facilities all across the world.

The emergence of multi-agent cyber-physical systems is the result of this demand. These
agents help the production system be modular, decentralized, exible and changeable in
order to adapt to changes in product demand.

Since these agents cannot manage and resolve unforeseen situations in a production
facility, they can be used to help workers in their task. An assistance system is being
developed atSmartFactoryKL to help workers in deciding which step should be taken
next in the assembly process. An assistance system is a multi-modal CPS which collects
data with the help of sensors in di�erent forms and decides the next step based on this
information.

The aim of my thesis is to study the process of attaching a weighing module to the
assistance system and develop a framework that helps interoperability of data among
CPS modules. This can be seen as providing the guiding principles for allowing data
collected by one sensor to be used by other modules.

Modular and Adaptive Assistance System for Manual Assembly - Engineering a
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CHAPTER 1. INTRODUCTION

One way of facilitating exchange of data is through ontologies. A framework for de-
signing ontologies of the attached modules and exchanging data is described next. This
framework starts with de�ning the parameters to gauge the e�ectiveness of adding a
module, followed by de�ning the scope of modules and their intelligence. In the next
step, an information model is developed and an ontology is created. In this last step,
communication between the central system and modules is described.

The thesis is divided into 5 main chapters. Chapter 2 describes and motivates the
research problem, i.e. interoperability between CPS modules. Chapter 3 describes the
key ideas behind smart factories and assistance systems and discusses the state-of-the-
art. Chapter 4 describes the methodology adopted to solve it and, the detailed solution
is laid out as a framework in Chapter 5. Chapter 6 deals with the design choices which
need to be made during implementation of such a system. The thesis concludes with the
limitations of the suggested solutions and with discussion of the possible future work in
this area.
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2. Research Topic

P�erez et al. [P�er+15] in their paper talk about adaptive production systems where workers
can perform work aided by machines. These adaptive systems treat automation as an
enhancement of worker's physical and cognitive capabilities. Manual assembly stations
being developed by smart factories are one such example of adaptive automation.

The assembly stations are equipped with assistance systems in order to ease the assembly
process for workers. These assistance systems help workers by showing the next step to
be taken in the process. It consists of a central adaptive system and CPS modules
thus making it both adaptive and modular. These modules measure di�erent aspects
and parameters of environment, for example, a hand tracking module or an eye tracking
module can track the position of worker, a weighing module can give information about
number of parts, a RFID tag reader can track the status of products, etc. The central
system can be made moreawareof the worker's environment by addition of such CPS
modules. This will allow it to help workers more e�ectively.

The modules being developed follow the principle of plug-and-produce which requires
them to be smart and adaptive themselves as well. Plug-and-produce is one of the key
paradigms of Industry 4.0 as it facilitates the addition or removal of CPS modules as
required for the automation of a process. Quint et al. [Qui+16] talk about such an
assistance system developed bySmartFactoryKL and describe its system architecture.
However, to fully exploit the bene�ts of such an assistance system, it is important that
one CPS module can access data provided by other modules.

This is the gap I intend to �ll with my thesis by developing a semantic model for di�erent
modules attached to an assistance system which may have heterogeneous data. For
modules to be able to understand and exchange data, it is necessary that they have the
same vocabulary. For this purpose, developing a semantic description of the modules is
necessary. Once the semantic description of these modules is set, they can be developed
in-house or independently by third-parties. To the best of my knowledge, this area has
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CHAPTER 2. RESEARCH TOPIC

not been explored by researchers, specially in the context of cyber physical production
systems.

In this thesis, a concept for designing modules which can facilitate interoperability of data
will be proposed. Further, a framework will be developed to help engineers semantically
describe a CPS module and provide guidance to engineers on how to add modules to
an assistance system. Some practical suggestions regarding design choices during imple-
mentation (i.e. both during semantic description and development of the prototype) will
be given while using a weighing module as a use case. A part of the implementation
of a weighing module will be covered. Other avenues that this thesis opens will also be
discussed briey as future work.
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3. State-of-the-art

The vision of CIM (Computers in Manufacturing) of creating completely automated facto-
ries could not be realized due to the complexity involved in production processes [Zue08].
The e�ort to implement CIM made it clear to engineers that completely automated fac-
tory is not a plausible solution as per the state-of-the-art. Humans are an indispensable
part of production systems but automation at di�erent stages of product is a necessity
and a practical approach to the problems of increasing product variants, reducing product
life-cycle and rising labour costs [Rom+15].

Production facilities are focusing on cyber-physical systems (CPSs) that can interact
with human through many modalities. CPSs are a combination of interacting embedded
computers and physical components. Both computation and physical processes work
in parallel to bring about the desired output. Computers usually monitor the physical
processes via sensors in real-time and provide feedback to actuators [Lee08; Jaz14]. A
CPS consists of one or more micro-controllers to control sensors and actuators which
are necessary to collect data and interact from its environment. These systems also
need communication interface to exchange data with other smart devices and a cloud.
According to Jazdi [Jaz14] data exchange is the most important feature of cyber physical
systems. CPSs connected over internet are also known as Internet-of-Things.

Lee, Bagheri, and Kao [LBK15] in their paper proposed a 5C level architecture which
de�nes functionalities of CPS very adequately. The levels of5C architecture are: (i)
smart connection which can be a sensor network, (ii)data-to-information conversion
level in which meaningful information is inferred from data collected by various sensors,
(iii) cyber level which connects all machines to each other and transfers information
to other machines, (iv)cognition which deals with proper presentation of the acquired
knowledge and, (v)con�guration level which takes feedback from physical and cyber
levels and acts as a supervisory control to make machines self-con�gurable and adaptive.

With the increasing sophistication of actuators and sensors available in the market,
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CHAPTER 3. STATE-OF-THE-ART

availability of data has increased many folds. The CPSs used to create exible and
re-con�gurable production systems called Cyber-Physical Production Systems (CPPSs).
CPPSs are build on the principle of modularity and decentralized control. Thus, these
modules are loosely coupled with each other.

3.1 Industry 4.0

Industrial revolutions occur with new inventions that lead to the change of infrastructure
and economy. The �rst industrial revolution is marked by the invention of coal and steam
engine which led the transition from hand tools to machine tools. Second Industrial
Revolution is characterized by centralized electricity, improved communication media,
rail-road networks, improved water supply and use of oil and fossil fuel. Production line
for mass production were introduced in this era. This industrial revolution was built on
fossil fuels, but the need for new energy resources was eminent due to depleting resources
and dangerous levels of CO2 emissions from factories. Advent of internet and renewable
energies facilitated a new infrastructure ushering the Third Industrial Revolution [Rif11].
Computers were introduced on factory oors that propelled automation in manufacturing
sector. The Fourth Industrial Revolution focuses on modular, decentralized cyber-physical
systems which can interact with each other and humans in real time, thus resulting in
exible production systems.

The term Industry 4.0 refers to the fourth revolution in manufacturing industry. The
concept of Industry 4.0 was motivated by smart, modular and adaptive production sys-
tems with decentralized control [HPO16]. Its vision is to bring automation in the �eld of
production and help combat the problems of increasing catalogue and labour costs. The
information and communication technologies have trickled their way down to the produc-
tion systems, paving the way for monolithic production systems to become modular and
have decentralized control architectures. It is one of the most signi�cant directions in
computer science, information & communication technologies and manufacturing tech-
nologies. Industry 4.0 is characterized by a paradigm shift from centrally controlled to
decentralized processes.

The core idea of Industry 4.0 is to integrate information technologies to operate busi-
ness and engineering processes in a exible and e�cient with constantly high quality
and low cost. The main feature of Industry 4.0 is horizontal, vertical and end-to-end
integration. Horizontal integration facilitates inter-corporation collaborations of value
networks, vertical integration enables information ow through hierarchical subsystems
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CHAPTER 3. STATE-OF-THE-ART

in a production system resulting in more exible and re-con�gurable production systems
and end-to-end engineering integration enables engineers to foresee the e�ect of product
design in production and services through software tools [Wan+16].

3.2 Smart Factory

Smart factories aim at the development, application and distribution of innovative, indus-
trial plant technologies and create the foundation for their widespread use in research and
practice [Zue10]. Research therein generally focuses on the use of innovative information
and communication technologies in automated systems and deals with design challenges
of such systems.

Figure 3.1: Shows an example of product and data ow in a Smart Factory. Product car-
ries RFID tag which contains product information. Inspection and inventory
triggers are automated. Source: MicrosoftIoT in Manufacturing Infographics,
2015.

They use smart, decentralized, modular and adaptive CPS. These CPSs reduce complexity
in the production system by strict modularization on all levels of automation, decentralized
control architectures and loose coupling between modules. These modules are thus
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CHAPTER 3. STATE-OF-THE-ART

robust, adaptive and can self organize by negotiating among themselves. Smart factories,
thus, can be seen as a hybrid production facility.

As shown in Figure 3.1, smart factories di�er from traditional factories in their re-
con�gurable layout in contrast to the �xed line where each machine is tailored for a
speci�c job. In a smart factory, machines are smart CPS modules which can be recon�g-
ured as per requirements. The machines and information systems in smart factories are
extensively connected and have decentralized control architecture which help CPS mod-
ules to negotiate with each other to organize to cope with system dynamics. Products in
smart factories follow dynamic routing as opposed to �xed routing in case of traditional
production lines. On the contrary, machines in traditional factories have a speci�ed role
and they perform functions assigned to them. Smart factories also make it possible for
smart devices to collect data. This data can be processed for insights and training pur-
poses, whereas in traditional factories, the data, if collected, is not well connected to
cloud and thus is not e�ciently used [Wan+16].

3.3 Human-in-the-loop

Computers in Manufacturing (CIM) established that it is important that the CPS systems
developed should help humans instead of trying to replace them because with the current
state of the technology it is di�cult to replicate human cognitive skills. This has lead to
human-centric workplaces. This approach to production was coined human-in-the-loop.

In complex production scenarios, the symbiotic man-machine systems are the optimal
solution. This change in the nature of human-machine led to the paradigm shift from
independently automated and manual processes towards a human-automation symbiosis
called human cyber-physical systems. These systems are characterized by collaborative
e�ort of workers and machines and aim at assisting workers being more e�cient and
e�ective [Rom+15]. These systems are based on a trusting and interaction-based rela-
tionship, which has human supervisory control and human situation awareness, leading
to adaptive automation to improve knowledge of worker and help the process. Human-
system interaction is an indispensable part of the production systems and acts as an
enabler of the intelligent decision making process [GBA15].

Since operators are to be kept in the production system, as discussed, it is important that
they are equipped with smart devices which can help them in their work. This evolution is
called Operator 4.0 and is characterized by smart and skilled operators who can perform
work aided by machines. The earlier generations are Operator 3.0 where humans work
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CHAPTER 3. STATE-OF-THE-ART

in collaboration with robots and machines, Operator 2.0 deals with humans assisted
by computer tools like CAx tools and NC operating systems, Operator 1.0 represented
manual and dexterous work aided by only mechanical tools [Rom+16].

3.4 Manual assembly stations

Earlier, automation was considered a plausible solution to the problem of increasing
variants and labour costs. However, it was soon clear that fully automated production
facilities were not the solution in the current scenario because such facilities would be
inexible and, thereby, expensive. Neither traditional nor fully automated systems can
respond e�ectively and e�ciently to dynamic changes in the system [Lei09]. Hence,
workers should be assisted, as needed, in their work thus including automation with
human aptitude as a trouble shooter. Manual assembly stations with assistance systems
are developed based on this concept.

Traditionally, a manual assembly line consists of a sequence of stations. These stations are
modular units, one in the chain of many automated/semi-automated stations. Products
are assembled by workers at each station. Usually, production facilities are one piece
ow. Depending upon the assembly plan of a product, one or more processes can be
performed on a station.

Figure 3.2 shows a schematic description of such an assembly station. These stations are
equipped with di�erent visualization techniques and sensor technologies. Visualization
techniques, like projectors and smart glasses as shown in Figure 3.2, help workers during
assembly process by displaying instructions. Interactive screens can also be installed
at assembly stations using which workers can interact with stationery computers when
required. Assembly stations have areas dedicated for storing tools and parts used during
assembly. Sensors can be employed to track usage of tools and control inventory of
parts. RFID readers are installed on products and to know the current status of products
in addition to the tools and parts as in the traditional workstations.

3.5 Assistance System

Assistance systems can play an important role in supporting humans during complex
tasks [GWM11]. Production facilities are focusing on CPS that can interact with human
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CHAPTER 3. STATE-OF-THE-ART

Figure 3.2: Shows schematic description of a manual assembly station. Assembly station
may employ di�erent visualization and sensor technologies, for example pro-
jectors and weighing sensors, to track the assembly process and help workers
by displaying instructions. Source CAD model developed by SmartFactoryKL .

through many modalities. Pirvu, Zam�rescu, and Gorecky [PZG16] talk about the en-
gineering insights of such human centered yet highly automated cyber-physical system:
keeping adaptive control in mind, a cognitive assistance and training in manual industrial
assembly. The aim of such a system is to design a mobile, personal assembly work station
which assists the worker in task solving in real time while understanding and inducing
work-ows. Standardized abstractions and architectures help the engineers in the design
phase by reducing the complexity involved in building such systems [Kol+16].

Assistance system derives its principles from the Operator 4.0 principle where workers
are provided machines to aid their work. It helps workers by reading the product status
available with products in machine readable format, collecting other information about
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CHAPTER 3. STATE-OF-THE-ART

Figure 3.3: Shows schematic description of an assistance system. Hand-tracking module
has been developed by SmartFactoryKL . Weighing module (highlighted in
yellow) will be developed as a use case of this thesis. Eye-tracking and tool
tracking modules are stated as examples which can be further developed.

the environment and helping the worker to decide the next step to be taken based on the
information it receives. Hence, this system can be seen as a context aware human-centric
cyber-physical system. As shown in Figure 3.3, this system consists of a central system
and one or more CPS modules.

These CPS modules are built on the principle of plug-and-produce. The analogy is drawn
from plug-and-play concept in computer science [Ara+01]. Plug-and-produce means a
smart device can be easily added or removed, replaced without disrupting functioning of
the system. The system should continue working while a CPS module is being added
or removed. Additionally, the system should be able to recognize the newly added CPS.
This process is di�erent from the traditional processes in which systems need to be re-
programmed and machines are stopped for recon�guration. Time taken in the complete
process is counted as downtime. Similarly, in case of plug-and-produce systems mainte-
nance can be done by removing only the required CPS module while the complete system
continues working.

For this purpose, each CPS module should have its own environmental information and
it should provide this information to the system to which it is being attached [Ara+01].
This gives central system the leeway to recon�gure and requires CPS modules to be smart
and adaptive which demands CPS modules to have certain level of intelligence.

An assistance system with a hand-tracking module is described and implemented on an
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CHAPTER 3. STATE-OF-THE-ART

assembly station by Quint et al. [Qui+16]. The paper describes an information model that
illustrates the employed terminology and the system architecture of assistance in manual
tasks. As shown in Figure 3.4, system architecture has four main components:Messaging
Server, Workow Model, Detectionand Views. A Messaging Serverconnects all com-
ponents and allows them to exchange messages. AWorkow Model contains states and
transitions for changes between states for a particular assembly task. ATrigger monitors
di�erent data sources (cameras, buttons) for events andViewsdisplay instructions based
on the current state of the assembly task. The system employs stationery computers,
tablets and smart glasses to display information to the worker as is shown in Figure 3.4.
If Workow Model receives a relevantTrigger, it changes the internal state machine to
a valid next state and the new state is broadcast to allViews. Viewsshow instructions
based on the current state of the assembly.

Figure 3.4: Shows schematic description of system architecture of assistance system. It
contains four main components at the highest level:Trigger , Messaging
Server , Workflow Model and Views. Source [Qui+16].

Further, various CPS modules can be attached to the assistance system like weighing
module, eye-tracking module or tool usage module. In order to fully exploit the bene�ts
of the CPS modules data exchange between these modules is necessary. Quint et al.
[Qui+16] point out that standardized semantic self-description is required to facilitate
interoperability between modules.

Recently, there have been some e�orts towards discussing the need of bringing more
semantics and data-driven approaches to Industry 4.0. Cheng et al. [Che+15] identify
varying degree of semantic approach and further provide guidelines to engineers to select

13



CHAPTER 3. STATE-OF-THE-ART

appropriate semantic degree for di�erent Industry 4.0 projects. Wahlster [Wah14] talk
about the importance of semantic technologies in mass production of smart products,
smart data and smart services. Semantic service matchmaking in cyber-physical produc-
tion systems is presented as a key enabler of the disruptive change in the production logic
for Industry 4.0. Obitko and Jirkovsky [OJ15] introduce the application of semantic web
technologies in handling large volumes of heterogeneous data from distributed sources.
Grangel-Gonz�alez et al. [Gra+16] describe an approach to semantically represent infor-
mation about smart devices. The approach is based on structuring the information using
an extensible and light-weight vocabulary aiming to capture all relevant information.

The aim of this work is to ensure that CPS modules attached to assistance system
can share data and interoperate between themselves. Ontology is an e�cient way of
interoperability between heterogeneous information systems [CGY07]. Further, Chen,
Finin, and Joshi [CFJ03], Grangel-Gonz�alez et al. [Gra+16], and Semy, Pulvermacher,
and Obrst [SPO04] talk about ontologies being the key requirements for building pervasive
context-aware systems in which independently developed sensors, devices and agents are
expected to share contextual knowledge and to provide relevant services and information
to users based on their situation.

3.6 Ontologies

An ontology is an explicit formal naming, de�nition of entities, relationship between
entities, and constraints within a domain in order to have common understanding and
information for participating people and machines [CGY07]. It helps in explicitly stating
the assumptions and analyzing the "domain knowledge": this helps people from di�erent
disciplines in understanding the relationships and constraints of a given domain.

The idea behind using ontologies in the thesis is to be able to formally and explicitly de�ne
the structure and data of a CPS module. Further, it can act as a basis for providing
and fetching data from other modules attached to the central system. As the assistance
system consists of a central system and CPS modules, it is necessary to understand how
the ontologies for di�erent CPS modules would be created and maintained. Hoehndorf
[Hoe10] talk about upper ontologies and its usefulness in facilitating domain-speci�c
ontologies. Upper ontologies can be created to provide a framework for domain speci�c
ontologies of CPS modules. Upper ontologies will have common knowledge base and
logic which module ontologies use.
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3.6.1 Upper Ontologies

Upper ontologies are high-level, domain-independent ontologies, providing a framework
by which disparate systems may utilize a common knowledge base and from which more
domain-speci�c ontologies may be derived [SPO04]. Thus, upper ontologies facilitate
interoperability between domain-speci�c ontologies by the virtue of shared common terms
and de�nitions [Hoe10]. The concepts expressed in upper ontologies are intended to be
basic and universal concepts to ensure generality and expressiveness for a wide area of
domains. An upper ontology is limited to concepts that are meta, generic, abstract and
philosophical. Standard upper ontologies are also sometimes referred to as foundational
ontologies or universal ontologies. They contain de�nitions and axioms for common
terms that are applicable across multiple domains and thus provide semantic integration
of domain ontologies. Since they provide well de�ned primitives, they help in resolving
conicts that may arise while extending the categories and provide common foundation
for both existing and new ontologies.

On the other hand, domain ontologies have speci�c concepts particular to a domain and
represent these concepts and their relationships from a domain-perspective. Multiple
domains can have the same concept but their representation may vary due to di�erent
domain contexts. Domain ontologies inherit the semantic richness and logic by importing
upper ontologies.

Beisswanger et al. [Bei+08] describe use of upper ontology for sharing vocabularies needed
for consistently expressing meta-data in terms of semantic annotations and providing
principled forms of conceptual inter-linkage between data. Another important feature
of upper ontology is the structure that they impose on the ensuing ontologies: they
promote modularity, extensibility, and exibility. According to Semy, Pulvermacher, and
Obrst [SPO04], upper ontologies can be built using two approaches: top-down and
bottom-up. They discuss bene�ts and limitations of both approaches. In a top-down
approach domain ontology uses the upper ontology as the theoretical framework and the
foundation for deriving concepts [SPO04]. In a bottom-up approach, new or existing
domain ontologies are mapped to an upper ontology. This approach also bene�ts from
the semantic knowledge of upper ontology but the mapping can be more challenging
as inconsistencies may exist between the two ontologies. For example, two teams may
have di�erent vocabulary for a similar semantic variable. In this case, mapping the two
ontologies to an upper ontology would have inconsistencies. These inconsistencies are
resolved as and when needed. However, usually a combination of both approaches is used
to design upper ontologies.
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The solution proposed to the problem of interoperability across modules relies heavily on
the idea of upper ontologies. Upper ontology starts with de�ning a set of high level enti-
ties and then successively adding new content under these entities [NP01a]. The solution
incorporates both the top-down and bottom-up approaches. The inevitable incompati-
bilities while making new ontologies are resolved as they are encountered. Depending on
the need entities are added to the high level ontology.

In an ideal situation, eventually a stage should be reached where the demands of both
high-level and low-level ontologies are satis�ed. This resulting ontology may not contain
all the possible high-level de�nitions and axioms but it should be comprehensive enough
to attach to other domain-speci�c ontologies [NP01a].

Ontologies were developed for the use on Semantic web. Semantic web is an extension
of web that help in semantically structuring data. The aim of Semantic web is to help
software agents interact and share information over the internet. This is done by encoding
the data in a machine interpretable language using constraints de�ned in the domain
ontology. This lets software agents locate resources to extract and use information on
the web. This di�erentiates ontologies from other traditional languages, like UML and
SysML, used to describe software structure.

3.6.2 Mid-level Ontologies

A mid-level ontology act as a bridge between basic vocabulary described in the upper on-
tology and domain-speci�c low-level ontology. Generally, mid-level and upper ontologies
are intended to provide mechanism to map concepts across domains. Mid-level ontolo-
gies may provide more concrete representations of abstract concepts found in upper
ontologies. This category of ontologies may also encompass terms and de�nitions used
across many domains but which do not qualify as concepts of a particular domain-speci�c
system. They are also known as utility ontologies.

Figure 3.5 shows an example of upper, mid-level and domain ontologies. Most general
vocabulary and concepts regardingProcess andLocation are de�ned in the upper on-
tology. Mid-level ontology is used to describe location in detail and de�nes variables
pertaining to Geographic Area of Interest . The domain ontology extends from
mid-level ontology and further de�nesAirspace andTarget Area of Interest sep-
arately.
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Figure 3.5: Shows a graphical representation of an example ofUpper, Mid-level and
Domain ontology levels. Upper ontologies provide framework for disparate
systems, domain ontologies represents concepts particular to a domain and
mid-level ontologies act a bridge between upper and domain ontologies.
Source: [SPO04]

3.6.3 Representation of Ontologies

Ontologies are expressed as an abstract language: Web Ontology Language (OWL).
However, to understand the reasons behind its structure, it is important to look at their
representation and development. OWL has been developed on the basis of several layers
of underlying infrastructural layers shown in Figure 3.6. The syntactical layer is a serial-
ization layer and can be de�ned by XML or other markup languages. World Wide Web
Consortium (W3C) recommends XML/XML Schema, JSON, N-Quad and Turtle for this
purpose. Resource Description Framework (RDF) describes how to express relational data
in triples, RDF Schema (RDFS) adds more structure to RDF to make it more human/real-
world-modeling friendly and, �nally, Web Ontology Language (OWL) adds vocabulary to
allow reasoning with and exchanging of knowledge within a domain. RDF, RDFS and
OWL are all W3C recommendations for knowledge representation in ontology building.
This section will only touch upon the basics necessary to understand the concepts re-
quired for the solution proposed later in the thesis. Readers are encouraged to know
more about the representation of ontologies from the W3C recommendations [Gro+09;
BGM14; Gao+09].
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Figure 3.6: Shows four level modeling framework of ontologies.XML/XML Schemapro-
vides syntax of encoding text whereasRDF, RDFSand OWLare used for knowl-
edge representation. Source: Atkinson and Kiko [AK05].

XML / XML Schema

eXtensible Markup Language is a format to encode any structured data in a way that it is
readable by both humans and machines. XML Schema de�nes how to formally describe
an element in XML. XML/XML Schema provides syntactical constraints for knowledge
representation languages.

An example XML snippet may looks like Listing 3.1. AtagNamecan be interpreted
as class and an attribute as theproperty of the class. Thedata is used to give more
detailed structuralcontent of the class and its relationship with other classes (i.e. nested
tags). The language can be eXtended by de�ning new tags (i.e. classes), properties (i.e.
attributes) under new name-spaces (i.e.ns).

< ns : tagName ns : t a g A t t r i b u t e 1="a t t r 1� v a l u e "
ns : t a g A t t r i b u t e 2="a t t r 2 � v a l u e">

data
< /ns : tagName>

Listing 3.1: An example XML snippet. Thens stands fornamespace, which is how the
language can be extended. Also, thedata can again be one or more tags,
thereby allowing for expression of nested structures.
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Figure 3.7: Shows schema of a triple. A triple consists of asubject , a predicate
and anobject . Each such statement in RDF also has a unique IRI (see
Section 3.6.8) associated with it, which further has three statements associ-
ated with it, identifying the subject, predicate and object of the statement
(rei�cation).

RDF

The Resource Description Framework (RDF) is a general-purpose language for represent-
ing information in the Web.

RDF is a data model which serves to link all RDF-based languages and speci�cations.
The abstract syntax is very simple: RDF graphs are sets ofsubject-predicate-object
triples, where the elements may be IRIs (see Section 3.6.8), blank nodes, or typed literals.
Example of a triple is shown in the Figure 3.7. It is easy to see how such triples can
be used to describe the resources and their inter-relationships. A RDF database is an
organized collection of RDF graphs related to a certain domain. Such a database forms
the raw fodder for ontologies and allows exchange of data while still preserving the
semantic meaning associated with them. RDF speci�cation de�nes a vocabulary for this
purpose under its own namespacerdf .

For example, a person named John is a teacher, likes music, plays football and has a
bicycle. This information will be seen as Figure 3.8 for an OWL ontology and stored in
the form of following triples in database.

� f John, isA, Teacherg

� f John, likes, Musicg

� f John, plays, Footballg
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Figure 3.8: Example description of triples in database.

� f John, hasA, Bicycleg

RDF is an abstract data description framework and lacks a serialization format. W3C
recognizes several valid serialization formats: XML (also called RDF/XML), Turtle, N-
Quads and N-Triples. As XML was the �rst serialization format, and for simplicity of
exposition, this thesis will only use the XML formatting. Back to the example, when
serialized to XML/RDF format, it may look like the following snippet shown in Listing 3.2.
The new vocabulary introduced by RDF are the terms with the namespacerdf , e.g.
rdf:Description , rdf:about , rdf:resource , etc.

< r d f :RDF xmlns : p rops="h t tp : / / URI/ f o r / our / p r o p e r t i e s ">
< r d f : D e s c r i p t i o n r d f : about="h t tp : / / URI/ f o r / pe rson /John">

< r d f : t ype r d f : r e s o u r c e="h t tp : / / URI/ f o r / c l a s s / Person " />
< / r d f : D e s c r i p t i o n>

< r d f : D e s c r i p t i o n r d f : about="h t tp : / / URI/ f o r / pe rson /John">
< prop : isA> Teacher< /prop : isA>

< / r d f : D e s c r i p t i o n>

< r d f : D e s c r i p t i o n r d f : about="h t tp : / / URI/ f o r / pe rson /John">
< prop : l i k e s> Music< /prop : l i k e s>

< / r d f : D e s c r i p t i o n>
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. . .

< / r d f :RDF>

Listing 3.2: An Example snippet of XML for RDF Graph shown in Figure 3.8

RDF also provides is a mechanism for querying database using SPARQL. RDF allows
rei�cation of each triple in database to create (at least) three other statements: one
identifying the the subject, one the predicate and the object of the statement. All state-
ments are also treated as resources and URIs are assigned to them for this purpose. For
example, sayJohn-plays-Football is de�ned as a triple in RDF format. RDF treats
each of the following entitiesf John, plays, Footballg as subject of three statements
and assign URIs (see Section 3.6.8) to them:JohnURI-rdf:subject-statementURI ,
playsURI-rdf:predicate-statementURI andFootballURI-rdf:object-statementURI .
This makes the information more explicit, searchable, and gives OWL (discussed later)
the ability to make inferences.

RDFS

RDF Schema provides additional data modeling vocabulary for RDF data. In particular,
it allows:

� limiting the range and domain of predicates (i.e. attributes) viardfs:range and
rdfs:domain , respectively, and,

� Object Oriented Programming like hierarchical modelling of Classes and Properties
via rdfs:subClassOf and rdfs:subPropertyOf , respectively.

RDFS also allows addinglabelsand annotationsto RDF statements (viardfs:label
and rdfs:annotations). These can be used to make the statements more human-friendly
and to add more meta-data to the statements for certain reasoners.

OWL

The Web Ontology Language (OWL) is a semantic markup language for publishing and
sharing ontologies on the World Wide Web. It is a knowledge representation language,
designed to formulate, exchange and reason with knowledge in the domain of inter-
est [Gro+09]. OWL is designed for use by applications and developers alike. Formally,
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it is a vocabulary extension of RDF (the Resource Description Framework) and RDFS.
OWL facilitates greater machine interpretability of knowledge than that supported by
XML, RDF, and RDF Schema (RDFS).

Additionally, it also has formal semantics associated with its vocabulary which allows use
of Description Logic [Baa03] for making inferences. For example, OWL allows marking a
Property as an inverse of another property by using the predicateowl:inverseOf . This
allows writing a statement likehasASonURI-owl:inverseOf-hasAFatherURI . Now if
an Ontology has a statementJohn - hasASon - Samthen by the virtue of inverse
property, an OWL reasoner can infer thatSam - hasAFather - John.

< owl : Ob jec tP rope r t y r d f : about="hasASonURI">
< owl : i n v e r s e O f r d f : r e s o u r c e="hasAFatherURI"/>
< r d f s : domain r d f : r e s o u r c e="PersonClassURI "/>
< r d f s : range r d f : r e s o u r c e="PersonClassURI "/>

< /owl : Ob jec tProper ty>

< owl : Ob jec tP rope r t y r d f : about="hasAFatherURI">
< r d f s : domain r d f : r e s o u r c e="PersonClassURI "/>
< r d f s : range r d f : r e s o u r c e="PersonClassURI "/>

< /owl : Ob jec tProper ty>

Listing 3.3: Snippet of OWL code showing howowl:inverseOf can be used. It also
uses vocabulary de�ned by RDFS. Note that an explicitowl:inverseOf
de�nition was not needed forhasAFather as it can be also be inferred using
Description Logic.

3.6.4 Structure of Ontologies in Prot�eg�e

Prot�eg�e is a free, open source ontology editor and a knowledge management system. It is
created by Stanford Medical School for developing intelligent systems. Prot�eg�e provides
a graphical interface to de�ne ontologies which helps various stakeholders to think in
terms of concepts and relations in the domain. Prot�eg�e is used as the ontology building
tool and to demonstrate knowledge exchange across CPS modules later in this thesis
work.

Entities are the atomic constituent of ontologies [Gro+09]. Typically, entities are an en-
compassing concept for classes, object properties, data properties or individuals. Entities
are discussed in detail here:
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Classes

Classes are the center of an ontology as they represent concepts in most ontologies.
Classes are concepts in a domain. Classes can have hierarchy in the form of subclass
and superclass. A subclass inherits from a parent class or superclass. The idea behind
inheritance is that subclass acquires all the properties and behaviours of parent class.
Thus, it saves the e�ort to de�ne similar classes again. Classes can be created in a
particular ontology or can be imported from a di�erent ontology. Figure 5.18 shows
WeighingSensor, Container and RFIDare the classes created in the weighing mod-
ule system ontology. The classes correspond to di�erent concepts of weighing module.
WeighingSensorreports the raw weighing sensor data,RFIDgives information read from
RFID tags andContainer has static values about container box.

Figure 3.9: Shows the classes (WeighingSensor, RFID and Container ) de�ned in
weighing module ontology.

Further, axioms are de�ned for classes. They can be understood as facts about a concept.
According to the W3C's OWL speci�cations, axioms are as the basic statements that an
ontology expresses and asserts as true. They can be explicitly stated or inferred from given
knowledge. For example, given thatJohn-isA-teacher andteacher-isA-person , the
axiom thus inferred isJohn-isA-person .

Object properties

Object properties de�ne relationships between classes and, therefore, between individuals.
Object properties can have certain attributes themselves (e.g.owl:FunctionalProperty )
and can be related to other properties (e.g. using theowl:inverseOf relationship). For
example, if there is an object property de�ning John-likes -Music, then the inverse of
the object property can be Music-isLikedBy -John.
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Figure 3.10: Figure shows relationships between objectsWeighingSensor, RFID &
Container de�ned in weighing module ontology in Prot�eg�e.

Figure 3.10 shows both direct and inverse relations de�ned in weighing module ontology
between the classes:Container , WeighingSensor and RFID. Following are the object
properties de�ned in Prot�eg�e for weighing module ontology:

WeighingSensor-RFIDrelationship:

� WeighingSensor getsDataFrom RFID

� RFIDprovidesDataTo WeighingSensor

WeighingSensor-Container relationship:

� WeighingSensor hasContainer Container

� Container isKeptOn WeighingSensor

RFID-Container relationship:

� RFIDhasProductDetailsOf Container

� Container hasRFIDTag RFID

Data properties

These are used to connect individuals (see Section 3.6.4) to literal values. Literal values
are de�ned by domain and range it has and can be of various data types like string,
oat, integer. Figure 3.11 shows data properties corresponding classes: WeighingSen-
sor, RFID and Container. WeighingSensor has data properties:hasTotalWeight , RFID
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has data properties:f hasPartName, hasPartType, hasPartWeightTolerance g and
Container has data properties:f hasX, hasY, hasZ, hasLength, hasBreadth, hasHeight,
hasInventory g as shown in the �gure.

Figure 3.11: Shows data properties of classesContainer , WeighingSensor and RFID
in weighing module ontology.

Individuals

Individuals areinstancesof the aforementioned classes. Thus, individuals contain prop-
erties of their classes and further assign values to the properties to describe that instance
of class. Figure 5.26 shows three individuals of classesContainer , WeighingSensor
andRFID.

Individuals further assign values of data and object properties for each instance of that
class. Figure 3.13 shows an example of individualContainer1 of the classContainer
created in the weighing module ontology. The individual describes data properties:
hasContainerWeight , hasLength, hasBreadth, hasHeight , hasX, hasY, hasZ and
hasInventory for a particular container. Similarly, individualContainer1 de�nes its
relationships with individuals of other classes. Container1hasRFIDTagRFID1 and
isKeptOn WeighingSensor1.
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Figure 3.12: Shows three individuals of classesContainer , WeighingSensor and RFID
each in weighing module ontology.

Figure 3.13: Figure shows values of data properties ofContainer1 and its relation with
RFID1& WeighingSensor1.

SPARQL Query

SPARQL Protocol and RDF Query Language (SPARQL) is a semantic query language
for databases. It retrieves and manipulates data stored in RDF format. SPARQL 1.0
is a W3C recommendation since 2008. Later in 2013, SPARQL 1.1 was added as W3C
recommendation. Listing 3.4 shows an example of a SPARQL query. Pre�xesrdf , owl,
rdfs andxsd (all are standards of W3C) are added if their vocabularies are required to
make the query. The namespace/pre�xarbeitsplatz is de�ned by the author in the
process to build Prot�eg�e model for the use case.

26



CHAPTER 3. STATE-OF-THE-ART

PREFIX r d f : < h t tp : / /www. w3 . org /1999/02/22 � rd f � syntax� ns#>
PREFIX owl : < h t tp : / /www. w3 . org /2002/07/ owl# >
PREFIX r d f s : < h t tp : / /www. w3 . org /2000/01/ rd f � schema#>
PREFIX xsd :< h t tp : / /www. w3 . org /2001/XMLSchema#>
PREFIX a r b e i t s p l a t z :< h t tp : / /www. semant icweb . org / SmartFactoryKL /
A r b e i t s p l a t z / BaseOntology/>

SELECT ?partName ?name
WHERE f ?partName a r b e i t s p l a t z : hasPartType ?nameg

Listing 3.4: Shows an example of SPARQL query where pre�xesrdf , owl, rdfs and xsd
are de�ned by W3C and pre�xarbeitsplatz is de�ned by the author. The
pre�xes identify namespaces which contain the vocabulary to run the query.

3.6.5 Ontology Integration

Ontology development can be seen as de�ning structure, constraints and data for other
programs to use. Software agents and other problem solving methods can use these
ontologies as ready-made data that can be fed to the program in order to understand
the axioms and basic principles of the domain. The independently developed ontologies
need to join to exchange data.

Figure 3.14 depicts the idea behind ontology integration. It is the process of �nding
commonalities between two ontologies, for example Ontology A and ontology B, and
a third ontology C is derived from it. This new ontology C facilitates interoperability
between software agents based on ontologies A and B. The new ontology C may replace
the old ontologies or may be used as only an intermediary between systems based on
ontologies A and B are merged in a third ontology C as shown in the �gure. Ontologies
can be integrated primarily in three ways depending on the amount to change required
to derive the new ontology [Sow+00]:

By alignment

It is the weakest form of ontology integration. This requires minimal change, but supports
only limited kinds of interoperability. It is generally used for information retrieval, but does
not support deep inferences. For example, alignment maps concepts and relationships
between ontologies A and B such that it partly preserves ordering by subtypes in both
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Figure 3.14: Shows schematic description of ontology merging. In the presented example,
Ontology A and Ontology B are merged with an existingOntology C.

ontologies. If an alignment maps a concept or relationx in ontology A to a concept
or relationy in ontology B, thenx and y are equivalent. The mapping of concepts is
not complete, therefore there can be a concept or relation in ontology A that has no
equivalent in ontology B.

Before the two ontologies A and B are aligned, it may be necessary to introduce new
supertypes and subtypes of concepts and relations in one of the two ontologies. No other
changes to the axioms, de�nitions or computations in either A or B are made during the
process of alignment [Sow01].

By partial compatibility

It is more interoperable than by the alignment but also requires extensive changes as
compared to alignment. It can be de�ned as an alignment of ontologies A and B that
supports equivalent inferences or computation on all equivalent concepts and relations.
For example, if ontologies A and B are partially compatible then any inference or compu-
tation that can be expressed in one ontology using only the aligned concepts and relations
can be translated to an equivalent inference or computation in the other ontology.
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By uni�cation or total compatibility

This is also known as ontology merge. It gives complete interoperability between the data
of ontologies, but may require signi�cant changes. For example, if partial compatibility
of two ontologies A and B is extended to a total compatibility in the new ontology C
then ontology C includes all concepts and relationships of both ontologies A and B. Any
inference or computation that can be expressed in either one ontology can be mapped to
an equivalent inference or computation in the other ontology [PGM99].

3.6.6 Ontology Conicts

Ontology merging for integration of heterogeneous data sources is a complex activity that
involves data reconciliation at various levels of conicts. These heterogeneous conicts
need to be resolved before the data can be integrated. Ram and Park [RP04] categorize
heterogeneity conicts in the following abstraction levels, each discussed separately.

Data

Conicts arise due to discrepancy in the underlying data values across multiple sources.
This conict arises at instance level and are related to the representation or interpretation
of data values. This includes type, incorrect names, unit, precision, allowed data and
missing data. Examples of these can be "km" and "metre", "dollar" and "$".

Structural

Conicts arise due to discrepancy in the underlying schema. This means di�erent alter-
natives are provided by one data model to develop schema for same reality.For example,
what is modelled as an attribute in one relational schema may be modelled as an entity in
another relational schema for the same application domain. "Author" can be an attribute
for the entity "book" and "author" can be an entity that has a relationship with "book".
Another example two sources may use di�erent names to represent the same concept,
"price" and "cost", or the same name to represent di�erent concepts, or two di�erent
ways, for conveying the same information, "data of birth" and "age".

Further, conicts at each level can be categorized into two kinds:
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� Syntactical Conicts: refer to discrepancies in the representation of data. For
example, "1-54" and "1.54" or "price=100 euros" and "price : 100 euros".

� Semantic Conicts: refer to disagreement about the meaning or interpretation
of same or related data. For example, "sta�" and "employees".

3.6.7 Temporal Dynamic Ontologies

In dynamic ontologies, time can be added as a variable for restraining the system.
CHRONOS can be used as a tool to make temporal ontology in Prot�eg�e [PPB14]. The
system is to be updated with time. However, time as a variable for the assistance system is
not discussed in this thesis. It is one of the areas that might be useful in the development
of assistance system ontology and can be explored in future work in Chapter 7.

3.6.8 Importance of Ontologies in Context of Industry 4.0

Semantic description of devices and services play a crucial role to be able to exchange
data. Moreover, Grangel-Gonz�alez et al. [Gra+16] talk about a common semantic model
for components of I4.0. This section deals with the major reasons for using ontology
based semantic modeling for I4.0:

� To share common understanding of data: Ontologies help in providing formal
naming and de�nition of entities across di�erent domains.

For example, di�erent airline websites contain information about ights. If these
websites share the underlying ontology, then other software agents can extract and
index this information. This makes it possible for software agents, like a travel
planner website, to query the indexed aggregated information, thus facilitating
sharing of knowledge and putting data to more use [N+01].

� To facilitate interoperability: I4.0 envisions new ways of managing data, devices
and services. These new components are made using di�erent formats of data.
Furthermore, there is an existing legacy of production systems need to coexist with
the new data and new formats. To meet this demand of interoperability, ontologies
have proven to be a successful way to integrating di�erent types of data [Gra+16].

� To explicitly state the underlying assumption of domain: It is easier to
de�ne assumptions in ontology and revisit them from time to time. If the domain
knowledge changes, these assumptions can be changed accordingly. On the other
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hand, hard-coding these assumptions might make if di�cult for other programmers
to search and change them. It becomes particularly more di�cult for people who
do not have expertise in programming. Further, it helps newbies to understand the
scope of domain and the terms associated with it.

� To enable reuse of domain knowledge: It is the most important feature of on-
tologies. Upper ontologies are built to facilitate the reuse of domain knowledge. It
allows experts to build semantically rich common knowledge base and a theoretical
framework for design. This knowledge base can be imported by other ontologies
to represent concepts and relationships in a domain-perspective. Multiple domains
can have the same concept but their representation might be di�erent depending
on the domain context.

� To ensure data availability: In order to build more pervasive context-aware
adaptive systems, it is important that data is available to devices in both ver-
tical and horizontal integration (discussed in Section 3.1) of Industry 4.0. I4.0
components should be able to communicate the data generated and interact with
other machines. Ontologies can be employed as the standard representation of
data. RDF data serialization can be easily done in many formats and SPARQL
can be used to query database, thus making the data available through a standard
interface [Gra+16].

� Providing global identi�cation Global identi�cation of Industry 4.0 components
and a linking mechanism between components and information are of paramount
importance for enabling intercommunication between components and their en-
vironment. Ontology provides Uniform Resource Identi�ers and Internationalized
Resource Identi�er (URIs/IRIs) as the unique global identi�ers, thus ensuring dis-
ambiguation of entities. In addition, OWL provides identi�cation capabilities that
can be extended by various existing vocabularies and achieve an unambiguous ref-
erence to an entity within a given context.
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4. Methodology

The focus of this work is to develop guidelines for interoperability between di�erent cyber
physical system with heterogeneous interfaces. To facilitate data exchange across CPS
modules the data needs to be semantically described. Figure 4.1 shows di�erent languages
used to represent data semantically. The languages and their relevance in semantic repre-
sentation of data in the context of cyber-physical systems are discussed. These languages
can be categorized as: controlled vocabularies, taxonomies, folksonomies, thesauri and
ontologies. However, not all languages are su�ciently expressive. The more expressive a
language is, the more accurately it can capture the speci�cation of terms and relation-
ships between them. This chapter will briey explore the various languages and discuss
their suitability for semantically describing CPS modules.

A controlled vocabulary is a contended list of terms for concepts along with the non-
preferred (incorrect variants) terms. Controlled vocabularies are also called authoritative
�les and may not necessarily have structure or relationships between terms. They are
generally used to ensure consistent indexing. Controlled vocabularies are the broadest
category which includes thesauri and taxonomies.

A taxonomy is typically a controlled vocabulary with hierarchical structure and relation-
ships between terms. The hierarchy is generally of the form parent/broader, child/nar-
rower or both if the term is at the mid-level hierarchy. Terms with a taxonomy are called
nodes. Equivalent synonyms may exist in a taxonomy.

However, taxonomies lack more complex relationships found in thesauri and ontologies.
Thesauri are essentially controlled vocabularies following a standard structure and well-
de�ned relationships. The relationships are generally of three kinds: hierarchical, asso-
ciative and equivalent (synonyms). Thesauri are mostly used to index literature on a
specialized subject area.

Traditional languages like UML do not permit sharing of the contextual knowledge be-
tween domains. However, such knowledge based semantic modeling with e�cient inter-

Modular and Adaptive Assistance System for Manual Assembly - Engineering a
Semantically Described CPS Module
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Figure 4.1: These are the di�erent languages that can be used for semantic representation
of data. Languages are placed on a scale based on how formally and explicitly
they state theterms and relationsbetween them. An ontology is a logical
language which uses description logic to represent a data model for a domain.
It itself is speci�ed using an XML schema and usually uses XML as the
serialization format. Source: Noy, McGuinness, et al. [N+01].

operability between heterogeneous modules can be done using ontology [N+01].

An ontology is a kind of taxonomy with structure and speci�c types of relationships
between terms. There are more types of relationships than a taxonomy and they are
more speci�c in their function. An example of such a relationship is theinverse function,
which cannot be expressed in a taxonomy. Ontological relationships are generally used to
describe information systems as they capable of capturing more terms and their relations
explicitly and formally.

A folksonomy di�ers from taxonomy in structure. Folksonomies are typically have cate-
gories de�ned by tags and may not necessarily have a hierarchical parent-child structure.
Folksonomies are primarily used by people to apply tags to online terms.

Keeping in mind the task at hand, folksonmies are not a viable option as they serve a
completely di�erent purpose: that of generating customized categories for users. Con-
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trolled vocabularies and taxonomies lack the structure to depict complex relationships
between terms. Furthermore, comparing thesauri and ontologies, ontologies are the bet-
ter choice as they can specify terms and relations in a manner which allows for intelligent
inferences using Description Logic [Baa03].

Ontologies can be categorized in broadly three kinds: upper, mid-level and domain on-
tologies depending whether they state the general terms and de�nitions of these terms
or can be tailored to domain-speci�c applications. Upper ontologies are made to de-
�ne terms and relationships at a high-level and are domain-independent, thus providing
a framework by which disparate systems may utilize common knowledge base. Upper
ontologies present abstract concepts of systems and facilitate interoperability between
domain-speci�c ontologies by the virtue of shared common terms and de�nitions. Mid-
level ontologies serve as a bridge between upper ontologies and domain-speci�c ontolo-
gies. They provide mechanism to map concepts across domains and present more concrete
representations of abstract concepts of upper ontology. Domain-speci�c ontologies, as
the name suggests, are tailor-made for a particular domain.

Since this work deals with an assistance system which has a central system and one
or more CPS modules, the design of the semantic structure of the complete system
will be considered. Here, upper and mid-level ontologies can be employed to provide
exchange and ease of understanding of data among modules: Upper ontologies provide
basic vocabulary and mid-level ontologies provide mechanism to map concepts for other
domain-speci�c ontologies. Upper ontologies would provide vocabulary to CPS modules
through which they can interact and query the central database for the data which the
central system itself uses. If domain-speci�c ontologies, i.e. the module ontologies, have
access to the vocabulary being used by other modules (either via mid-level ontologies
or otherwise), they too can query the central database for data being provided by other
modules. Sharing of data across the entire CPS system while preserving the semantic
meaning attached to it will solve the problem of interoperability, which is the primary
goal of the thesis.

This thesis also provides a framework for designing a CPS module and adding it to a
central system. Before the start of the designing of the ontology of the module, it is
necessary to de�ne the scope of CPS module which in turn decides the CPS intelligence.
The role of hardware and software limitations and the optimal representation of the in-
formation for the central system while deciding the system boundary will be discussed.
Finally, a real world implementation will be used as an example to explore the various is-
sues one may face during implementation and deployment and principles will be discussed
which will form a basis for making the design choices encountered.
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5. Concept

As discussed in Chapter 2, this thesis deals with an assistance system used to help
workers during assembly processes. This system consists of a central system and one
or more CPS modules as described in Section 3.5. Presently, the system implemented
at SmartFactoryKL has a hand-tracking module deployed at a manual assembly station.
However, to fully exploit the bene�ts of an assistance system, it is necessary that the CPS
modules can exchange data between themselves. The data exchange is non-trivial because
these CPS modules may be developed independently, and, therefore, may have di�erent
data structures, representation and communication protocols. One way to overcome
these barriers is to require modules to be semantic described [Qui+16]. This work aims
at providing guidelines for designing a CPS module and adding it to an assistance system.
A framework will be proposed for designing CPS modules, semantically describing these
modules and exchanging of data using ontologies. The framework is then used to show
how to design a weighing module for the assistance system, how to semantically describe
it, and how to allow interoperability with other modules.

5.1 Framework

This section describes the framework for designing additional modules for an assistance
system. These principles can also be applied for designing general CPS, but will concen-
trate only on the assistance module for ease of discussion. The framework focuses on
de�ning system intelligence and developing semantic models for the systems.

The �rst step in the design process is to de�ne the objective of the CPS and how
the e�ectiveness of the module can be gauged. Since CPSs should have decentralized
intelligence [Sal+15], the next step is deciding the intelligence of CPS modules which, in
turn, requires deciding theirscope. Hence, after de�ning the objective, how to decide CPS

Modular and Adaptive Assistance System for Manual Assembly - Engineering a
Semantically Described CPS Module
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boundary and, consequently, formulation of system intelligence prerequisites is discussed.
Following that, an information model, which de�nes and declares all the relevant data
of the CPS, is developed. Further, ontologies are developed based on the information
model and a way to integrate ontologies is suggested which addresses the problem of
interoperability of heterogeneous data.

5.1.1 Objective

This section deals with the objective of adding a CPS module to the assistance system
and discusses a possible ways of assessing the e�ectiveness of the added CPS.

Since the assistance systems are aimed at helping the worker, it is important to ensure
that the system is not too complex for the worker who is using it. Complex-to-use systems
may act as inhibitors and cause general discomfort in workers [Vil+17]. Therefore, it is
necessary that the interacting interface for the worker, if any, should be easy-to-use. The
metric can be: improvement in worker's comfort and job satisfaction and can be gauged
through on and o�-line surveys and feedbacks. Consequently, the e�ectiveness of the
CPS module and the assistance system as a whole, can also be obtained.

The next step in the design process is deciding the system boundary which is discussed
in the following section.

5.1.2 System boundary

The assistance system assists workers by communicating the next step to be taken in the
assembly process. It has di�erent CPS modules with sensors and a central unit which
decides the next step depending on the data provided by the modules. These modules
provide sensory data in di�erent forms to the central unit. At the onset of design, it is
often unclear what data the central unit should receive from the sensors. The options
range from all raw data to a binary signal(OK/not-OK). This design choice decides the
level of processing which should happen on the modules. Hence, it becomes important
to ascertain the scope of the modules which de�nes the form in which data is required by
the central unit. Here, the use of the notion ofsu�cient statistic to decide the boundary
of systems is proposed.

In statistics, a statistic is su�cient with respect to a parameterized statistical model if no
other statistic that can be derived from the same sample (e.g. raw sensor data) provides
any additional information as to the value of the parameter [Fis22]. For example, consider
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Figure 5.1: Shows data required to calculate mean of values. In the �rst case, complete
raw data is provided to the central node to calculate mean whereas in the
second case, only the su�cient statistic is provided.

the su�cient statistic to calculate mean of samples which are distributed across multiple
nodes as shown in Figure 5.1. Each node only needs to report the sum of its samples
and the number of samples to the central node doing the calculations. The central node
then can calculate the total sum and the total number of samples and produce the mean
without having the complete raw data (thereby saving computation and communication
costs). Hence,(sum of samples, number of samples) from each node is a su�cient
statistic for calculation of the mean on the server. Note that su�cient statistic are not
unique for a given model and dataset.

The choice of su�cient static is driven by the data required by central system. In other
words, the vocabulary, i.e. the terms de�ned by the central system, decide the system
boundary.

5.1.3 System intelligence

Ideally, the modules should have as few computational/communication requirements as
possible. It keeps the module cheap to produce (higher computational power is more
expensive), simple to maintain (simpler programs and internal components), and energy
e�cient (more powerful hardware requires more energy to run) while still assisting the
decision-making in the central system.

However, in order to calculate the su�cient statistic discussed above, the module needs
to be able to process the raw data it is receiving from its sensors and perform certain
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calculations. Hence, the choice of the su�cient statistic will put lower bounds on how
much computational power the module needs to have. Further restrictions on the com-
putational ability of the system can be derived from bounds on quality or accuracy of
the statistic required by the central system. Higher accuracy may require using more
powerful models for approximating the su�cient statistic, which may, in turn, require
higher computational/communication overhead.

Therefore, system boundary and system intelligence are coupled requirements which need
to be decided simultaneously. Both are key design decisions which will guide the exten-
sibility and deployability of the CPS in real-life.

5.1.4 Developing information model & ontology

Information model represents concepts and the relationships, rules, and constraints to
specify data semantics in the domain of discourse. It helps in understanding the struc-
ture of information, make domain assumptions explicit and analyze domain constraints.
Therefore, it is important to develop an information model of the semantic data before
creating an ontology.

Figure 5.2: An example of information model for a weighing module. It shows the relevant
physical entities and relationships between them.
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Information model can be seen as an abstraction of the physical layer developed by listing
the physical entities present in process. All the physical entities (e.g. actuators, sensors
and tags) are listed, irrespective of their role in calculating su�cient statistic. In the
second step, relations between physical entities are drawn. A module can have more than
one sensor which is represented byhas (n) statement in Figure 5.2. The end nodes of
all branches are the literal values for a parameter, which are usually either a string, an
integer, or a oating point number.

Figure 5.2 shows the information model of a weighing module. The model consists
of physical entities and relationships between these entities. One or more weighing
modules can be attached to the central system, as discussed earlier. The relationships
can map object-to-object, e.g. weighing module hasexactly onef Weighing sensor,
RFID, Container g, or can map object-to-data properties, e.g.RFIDhasexactly one
f part name, part type, part tolerance, inventory threshold g as shown in
Figure 5.2. It is important to map all possible (raw) data in the model so that the re-
lationships are clearly de�ned. This model will be instrumental in creating the weighing
module ontology.

Based on the information model, an ontology is created for the module as shown in
Figure 5.3. Information model acts as a lower bound for the ontology, which means
entities presented in information model are mapped one-to-one in the ontology. However,
su�cient statistic might not be a part of the information model which has to be included in
ontology. Thus, su�cient statistic, derived from system boundary and system intelligence,
serves as an upper bound of the ontology.

For example, su�cient statistic for aWeighingModulecan behasNumberOfPartswhich
is not present in the physical layer of information model. Hence,hasNumberOfPartsis
added as a data property in the ontology.

5.1.5 Merging ontologies

Ontology integration is the process of �nding commonalities between two di�erent on-
tologies A and B and deriving a new ontology C that facilitates interoperability between
computer systems on the A and B ontologies [Sow+00]. Integration can be done primarily
in three ways [Sow01], namely:

� Ontology alignment

� Partial Compatibility Ontology
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Figure 5.3: The information model (top-left), which is based on the physical setup of the
system, is used to design the ontology (top-right) during the design phase.
During implementation of the model, in the deployment phase, the sensors
in the information model will produce some raw data. This raw data will be
preprocessed by the CPS module (this is where system-intelligence comes into
play) and will be made ready for the ontology. The preprocessing step may
include operations like analog to digital conversion, computing a parameter
which is a function of data from more than one sensor (e.g.numberofParts
from totalWeight and weightPerPart ), calculating a moving average of
a sensor reading, etc.

� Uni�cation or Ontology Merge

Ontology merge is chosen as the preferred way of ontology integration because it pre-
serves complete ontologies while collecting data from di�erent parts of the system into a
coherent format which is not completely true for ontology alignment and partial compat-
ibility ontology as discussed in Section 3.6.5. Figure 5.4 schematically depicts merging of
ontologies. The entities (classes, individuals, data and object properties) used by more
than one module are de�ned and assigned in one module. These entities are imported
by other modules when required.
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Figure 5.4: Shows schematic description of central system upper ontology import by
central system and weighing module ontologies. Further, weighing module
ontology merge in central system ontology is indicated.

For example, weighing module ontology and central system ontology useWeighingSensor
class (refer Figure 3.14). Therefore, these ontologies are developed independently and
both import central system base ontology in order to access the same class de�nitions.
The ontologies are then merged to update the values of the instances. Weighing module
ontology can be further programmed using an OWL API function for merging ontologies
to deal with problems like the latest updated data in case of merging ontologies. Here,
entities are identi�ed as IRIs. It should be decided based on the requirements if the
complete ontology is merged every time and at what frequency the ontologies should
be merged. It is important to update otherwise static values because we do not know
whether any value is changed or not. A venue for future work is including (synchronized)
time as a variable which can keep track of the last-updated time of various quantities
saved on the central system, thereby allowing for selective merges based on which data
is new.

To summarize, a framework has been proposed for enabling interoperability of hetero-
geneous sensory data while designing CPS modules for assistance system. First, the
objective of adding the CPS module should be clearly stated which is necessary to set
targets and gauge improvements. Then system boundary and system intelligence should
be de�ned which are necessary to decide the scope of modules and decide the hardware
to be used. Next, the information model ought to be designed which will serve as the
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base for ontology creation. In the �nal section, the communication between modules and
how ontologies should be merged is discussed.

In the next section (i.e. Section 5.2), a deeper look into the design of the information
model and the ontology is taken as they leave scope for several design decisions. These
are discussed with the help of examples and rationale behind the decisions taken are
discussed. Similarly, Chapter 6 will deal with the design choices and problems faced
during deployment.

5.2 Model Development

In this section, the top-down (ontology based) and bottom-up (information model) de-
velopment of models for the CPS modules are discussed. Though the information model
should mirror the physical layer as faithfully as possible, there are some room for design
in it. Similarly, the ontology designed may di�er from the information model in a few
places due to requirements of the central system and, hence, while the information model
provides a good blueprint for it, some design choices still need to be made.

The issues faced during deployment of the modules will be discussed in Chapter 6.

5.2.1 Information model

In this section, designing of the information model of a CPS is described while using
the model of the Weighing Module as an example. Before describing the information
model, it will be worthwhile to briey study the physical layout of the Weighing Module
System, which is shown in Figure 5.5. The system may contain more than one Weighing
Module with each module further containing an RFID reader, a container and a weighing
sensor, as shown in the �gure. Information model for this weighing module is developed
as follows.

Figure 5.6 shows the information model for a part of the weighing module. Thecontin-
uation (i.e. the dotted lines) denote the places where the model has been truncated and
the remaining parts are shown in Figure 5.9, Figure 5.8 and Figure 5.10. The weighing
module system may have more than one weighing module and, therefore, the information
model allows a weighing module system to haven weighing modules. Each weighing
module in the model further hasexactly onecontainer to keep parts or products. It
has, among many other properties/entities)exactly oneRFID tag attached to it (see
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Figure 5.5: Simulated image of the Weighing module used for the implementation. The
module consists of three weighing sensors, each with a container and an RFID
reader. Source:SmartFactoryKL

Figure 5.10). The RFID taghas the speci�cations (static values) of the product (see
Figure 5.9). The weighing module further has a weighing sensor to read the weight values
(see Figure 5.8). This model is shown in Figure 5.6.

As a side-note, there is no unique information model for the weighing module and a
design decision is made to arrange the entities in this manner. If the information model
was to reect physical reality more closely, it would have looked like Figure 5.7 because
the RFID tag is attached to the container. The RFID tag in this model isnestedinside
the Container. However, actually, the RFID tag and the Container are independent when
it comes to the information they provide to the Weighing Module. Nesting them one
inside the other belies their dependence. It also makes the information model more nested
and, hence, more complex and constrained. The independent nature of each information
source is preserved and the structure of information model is kept more exible by saying
that weighing module has exactly one container, one RFID tag and one weighing sensor.

The purpose of RFID tag is to link a product with its speci�cations. Therefore, an
RFID tag has exactly one product and contains exactly one name, weight and tolerance
of weight corresponding to the product it has as shown in Figure 5.9. Here again the
information could be structured in the di�erent way by saying that RFID tag has exactly
one product name, product weight and product weight tolerance but the former structure
is chosen because it emphasizes the objective of attaching RFID to a product which is
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Figure 5.6: Shows con�guration ofWeighing module which hasWeighing sensor,
RFID Tagand Container .

also one of the principles of Industry 4.0 as discussed in Chapter 3.

The Container has its own weight, dimensions and position on the manual work station.
These are mapped in the information model as container has exactly one weight value,
one position and one set of dimensions as shown in Figure 5.10. The position has exactly
one coordinate which contain exactly one value of x, y, z and dimensions have exactly
one length, breadth and height. As the �gure depicts, there is one more value attached
to the container which is inventory threshold. Inventory threshold can also be attached
to the object product but is a part of container for the ease of data handling as RFID
tag would then only contain the product speci�cations and the RFID tag does not need
to be altered in case of change of inventory threshold.

The information model described in this section de�nes the entities and relationships
between these entities for a weighing module system. It is important to map all possible
(raw) data in the model so that the relationships are clearly de�ned. This model is then
used to create the weighing module ontology in the following section.

5.2.2 Weighing module ontology

An ontology is a formal way of explicitly de�ning entities and the relationships between
them as discussed in Section 3.6. This facilitates discourse among engineers and agents
and enables domain knowledge being taken into account while reasoning about the sys-
tem. Here ontologies and their use are discussed in the context of weighing module.
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Figure 5.7: Shows the alternate possible con�guration,Weighing module contains
Weighing sensor and Container . The Container has anRFID tag
nested inside it. Though it depicts the physical setup better, it increases
hierarchy, and does not depict the informational independence between the
two sources. This model, hence, is unnecessarily more complex and con-
strained.

As discussed in Section 3.5, an assistance system consists of a central system and one or
more CPS modules. As a part of this thesis, weighing module's ontology is designed and
the module is added to assistance system. Information model designed in the previous
section describes a weighing module. Weighing module, as shown in Figure 5.5, has one
or more weighing sensors with RFID reader attached to each module. A container with
parts is kept on each weighing module and an RFID tag is attached to each container:
RFID tags link product/part to containers. The RFID tag has the part information as
described in the information models (see Figure 5.7).

Ontology building starts with creating an upper ontology for the assistance system. This
upper ontology consists of the common knowledge base for all CPS modules attached
to assistance system and provides basic vocabulary for the modules. In the presented
example, the relationships between upper ontology of the assistance system, weighing
module ontology and a basic eye-tracking (as an example of a third party module) are
shown.

Upper ontology for the complete assistance system is developed by stakeholders as dis-
cussed in Section 3.6.1. Upper ontology can only be changed with the consensus of all
stakeholders when the central system grows to accept more kinds of data (through new
modules) to augment its intelligence. These are necessary changes in the basic vocabulary
required by the system.
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Figure 5.8: Shows con�guration ofWeighing sensor. Weighing sensor has values
of Total weight reported by sensor andSensor precision .

Figure 5.9: Shows con�guration ofRFID Tag. RFID Taglinks Product to the system.
RFID Tagcontains partName, Weight and Tolerance of part weight .

Upper ontology of an assistance system has a minimal set of de�nitions and axioms
relating entities. The entities de�ned in upper ontology are imported by central system
and CPS modules. The import of entities facilitate the exchange and understanding
of the (minimal) data between modules through common de�nitions and IRIs. IRIs, as
discussed in Section 3.6, are the Internationalized Resource Identi�ers used for unique
nomenclature of entities and axioms. This is the minimum data that the central system
needs to use the module e�ectively in assisting the worker. In the next step, ontologies for
CPS modules are created using the information models developed. How these ontologies
are organized will be discussed in the next section. CPS modules import upper ontology
of assistance system to ensure that the interacting variables are de�ned once in the
complete system. For example, weighing module has to at least report the name and
number of parts taken-out/kept-in container to the central system. In order to report the
change in the number of parts, both central system and weighing module system should
have a common vocabulary for the part name and number of parts. These variables are
de�ned in upper ontology of assistance system ashasPartNameand hasTotalParts .
Hence, by importing the assistance system upper ontology, weighing module system
ontology ensures that it shares the common representation of the interacting variables
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Figure 5.10: Shows con�guration ofContainer . Container has information about its
Weight, Dimensions, Position and Inventory threshold for a part.

hasPartNameand hasTotalParts and their associated restrictions and relationships.
Similarly, interacting variables for other modules are de�ned in upper ontology. However,
it is noteworthy that the variables imported by weighing module can be augmented, i.e.,
axioms and properties pertaining to the imported variables can be added in the weighing
module ontology and this addition will not be reected in upper ontology. If changes are
required in interacting variables by both central system and CPS modules, it has to be
changed in upper ontology. Upper ontology changes are infrequent and need consensus
of all stakeholders.

Next, interoperability of data between weighing module and hand-tracking module is
explained. Two possible ways of sharing data between the two modules are presented
and discussed in detail:

Decentralized Organizational Scheme

In this section, a decentralized organizational scheme for the ontologies is described. See
Figure 5.12 for a visual description. As shown in Figure 5.11, upper ontology of assis-
tance system is designed. To recap, upper ontologies of modules are created from their
information models. Weighing module ontology is described using its information model.
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These upper ontologies consists of de�nitions and axioms of entities and relationships
between them. Upper ontologies of all modules import the upper ontology of assistance
system as discussed above. So the basic vocabulary described by upper ontology of as-
sistance system is imported by the modules' ontologies. As information model maps all
possible data, weighing module upper ontology will contain axioms and de�nitions which
are needed for the weighing module system, but are not required by the central system
ontology. An example of this can be position of container(x, y, z) . This allows for
exibility in implementation of weighing module system. If another module requires data
regarding container position, ontology of that particular module can import the weighing
module upper ontology.

Design. Figure 5.11 shows the upper ontologies of assistance system, weighing module
and eye-tracking module. Upper ontology of assistance system describe minimal data
required for interaction between central system and both the modules. Upper ontologies
of weighing module and eye-tracking module describe all relevant data of the modules.
Both weighing module, eye-tracking module and central system ontologies import assis-
tance system upper ontology to ensure that the entities used to share data are uniquely
de�ned and all ontologies access the same IRI where required.

As an example, weighing module needs to report the part name and change in number of
parts to the central system. Therefore, these data properties,hasTotalNumberOfParts
and hasPartType, are de�ned in the upper ontology of assistance system. From there,
it will be imported into the central system ontology and the weighing module ontology.

To facilitate interoperability of data between modules, both the interacting module on-
tologies should have de�nitions and axioms of entities pertaining to the required data.
Here eye-tracking module is taken as a sub-system developed by a third party vendor.
For example, the eye-tracking module needs the position of containers kept on weighing
module to calibrate itself. This information was mapped in the information model of
weighing module and weighing module upper ontology describes the position of class
Container as a data property(x, y, z) . Hence, eye-tracking module ontology can
get de�nitions and axioms corresponding to(x, y, z) by importing the upper ontology
of weighing module system. This is the most crucial feature of this design.

Deployment. Figure 5.12 shows the deployment phase for the assistance system. The
weighing module will create instances of theWeighingSensor class and assign their
hasTotalWeight and hasPartType properties. Additionally, other properties will also
be assigned, e.g.dimensionsOfContainer , which are de�ned in the weighing module
upper ontology. During deployment, these instances with their properties will be com-
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Figure 5.11: Schematic description of upper ontologies of assistance system and mod-
ules. All module ontologies import assistance system upper ontology. Eye-
tracking ontology imports weighing module upper ontology to access enti-
ties/relationships of weighing module.

municated back to the central system and eye-tracking module can query the central
system for the individual values for positions of di�erent containers. While deploying the
system, individuals are created in weighing module system ontology which in turn imports
both upper ontologies of both assistance system and weighing module system as shown
in Figure 5.12.

Pros & Cons. This design focuses on building a completely decentralized system.
The central system's ontology will only contain the minimal taxonomy of entities and
properties which are necessary for the Central System to function, i.e., be able to use
the information from the modules e�ectively (see Section 3.6.1 for how to design the
vocabulary). However, the individual modules are free to report any variable which they
can measure and to report it to the central system. The central system will store that
information even if it may not have explicit uses for the variables but can produce this
knowledge if a di�erent third party module requests for it through SPARQL queries.

Hence, if the eye-tracking module requires the container position coordinates(x, y, z)
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Figure 5.12: Schematic description of ontologies while deployment. Module ontologies
import upper ontologies of assistance system and their own upper ontologies.
Individuals are created while deployment.

from the weighing module, and it was known during the design of the eye-tracking module
that the weighing module's ontology does have this information, the eye-tracking module
can write a SPARQL query to ask the central system for these coordinates (using IRIs it
imports from the weighing module ontology, i.e. the IRI for the relationshasX, hasY,
hasZ). If the weighing module attached to the central system has indeed reported the(x,
y, z) coordinate values, they will be returned to the eye-tracking module. Otherwise,
the eye-tracking module may have to fall back to manual calibration. Eventually, if the
properties are found to be useful in general, the upper ontology of the weighing module
and made it a standard way of reporting the value. This method, hence, allows any
two teams to communicate and to mutually agree on how best they can share data and
promotes rapid prototyping.

However, such a setup has the disadvantage that independent teams may reinvent proper-
ties independently and since these properties will have unique IRI (e.g.TeamA:hascoordinateX,
TeamB:hasXand TeamC:hasPositionX) but with the same semantic meaning. This
would complicate interoperability across modules and for the same information from dif-
ferent weighing modules the eye-tracking module will have to query independently. Figure
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Figure 5.13: Shows an example of reinventing variables that have same semantic mean-
ing. Here container position coordinatex is described by three di�erent
teams ashasCoordinateX, hasXand hasPositionX .

5.13 shows an example of such a situation where teams A, B and C independently de�ne
the variable for position of container ashasCoordinateX, hasX and hasPositionX .
Eye-tracking module needs the position coordinates then it would be required to import
all the three weighing module ontologies and query for them individually which increases
its work and making the system more error prone. On the other hand, if the teams follow
a particular nomenclature for de�ning variables would avoid reinventing similar variables
which reduces the number of both imports and queries. Consolidation of the property
names may also su�er due to the Not-Invented-Here syndrome [KA82].

A more subtle, and potentially more dangerous, side-e�ect of this design is compromised
security of the data stored in the central system. In this design, the central system is
completely unaware to the features which are being developed by independent modules.
Hence, the central system will need to be excessively permissive when it comes to allowing
arbitrary SPARQL queries by third party modules to run against the data stored it has
stored. A malicious module can very easily take advantage of vulnerability to obtain data
on the central system. An example of such a query is shown in 5.1. This simple query
can fetch complete data stored in the central system.
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PREFIX r d f : < h t tp : / /www. w3 . org /1999/02/22 � rd f � syntax� ns#>
PREFIX owl : < h t tp : / /www. w3 . org /2002/07/ owl# >
PREFIX r d f s : < h t tp : / /www. w3 . org /2000/01/ rd f � schema#>
PREFIX xsd :< h t tp : / /www. w3 . org /2001/XMLSchema#>

SELECT ? s u b j e c t ? p r e d i c a t e ? o b j e c t
WHERE f ? s u b j e c t ? p r e d i c a t e ? o b j e c tg

Listing 5.1: An example of a SPARQL query which will fetch all triples and hence
complete data on the central system.

Keeping these concerns in mind, another solution is proposed which trades-o� complete
decentralization in favour of a W3C committee like setup where a formal speci�cation (i.e.
a mid-level ontology) is maintained by a committee which consists of all stakeholders. Its
organizational scheme and bene�ts (i.e. enhanced security and prevention of re-invention
of properties) will be discussed in the next section.

Centralized Organizational Scheme

This section describes a centralized organizational scheme for the ontologies. As shown
in Figure 5.14, upper ontology of assistance system is created which consists of the
basic vocabulary for the complete system. The upper ontology consists of de�nitions and
axioms of entities and relations between them. Then a mid-level ontology is created. This
mid-level ontology imports the upper ontology of assistance system. Further, the mid-
level ontology describes the entities of all other modules. Depending on the engineers
describing the mid-level ontology, all or some of the signi�cant entities used by other
modules are de�ned in the ontology.

The idea behind creating a mid-level is to create a repository of all relevant entities
described in any CPS module. This simpli�es the search by engineers for variables required
by other modules. Mid-level ontology collects entities and their de�nitions described by
upper ontologies of modules to facilitate exchange of data and this di�erentiates the
approach from the previous approach. An assistance system upper ontology de�nes the
minimal variables requires by modules to send data to the central system. This ontology
is governed by the highest level committee and usually changes to it will be made when
new modules are attached to the assistance system. On the other hand, modi�cations
can be done easily in mid-level ontology which gives engineers the freedom to extend and
access variables.
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All modules' upper ontologies import the mid-level ontology. All modules need to import
the mid-level ontology only once as it has all entities de�ned in the complete system.
Discussing the previous example in the context of new design, if another module re-
quires position of container(x, y, z) , it does not need to import weighing module (in
which these variables were de�ned earlier) upper ontology because mid-level ontology has
de�nitions and axioms of(x, y, z) .

Figure 5.14: Schematic description of upper ontologies and mid-level ontology. Mid-level
ontology imports upper ontology of assistance system. Mid-level ontology
contains entities present in all modules. Modules' upper ontologies import
mid-level ontology.

Design. Figure 5.14 shows the upper ontologies of assistance system, weighing module,
eye-tracking module and a mid-level ontology. Upper ontology of assistance system
describes minimal data pertaining to basic vocabulary of the complete system. Mid-level
ontology is a bigger ontology describing entities of all modules. Thus, the mid-level
ontology has de�nitions of all relevant data present in the complete system. Upper
ontologies of all modules import the mid-level ontology. Hence, all module ontologies
have de�nitions of all entities present in the system and all entities are de�ned only once
and thus have unique IRIs.
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